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Alexander Marshak, 1 Anthony Davis, 1 Warren Wiscombe, and Robert Cahalan 

Center, Climate and Radiation Branch, NASA Goddard Space Flight Greenbelt, Maryland 

Abstract. Spectral and structure function analyses are used to study the smoothness 
properties of the radiation fields for stratiform clouds whose horizontally fluctuating 
extinction fields are modeled with multiplicative cascades. Models of this type are “scale 
invariant,” meaning that their two-point statistics obey power laws in the scale parameter. 
The independent pixel approximation (IPA) treats each pixel as a plane-parallel layer and 
yields scale-invariant albedo and radiance fields with the same exponents as the associated 
optical depth field. This is not the case with exact Monte Carlo (MC) results for which we 
confirm the existence of a characteristic “radiative smoothing” scale q. For scales larger 
than 7, IPA and MC reflectance fields fluctuate together, and the IPA can be invoked to 
infer optical depths from measured radiances. We use a multifractal characterization of 
structure functions to assess the performance of such retrievals. For scales smaller than TJ, 
MC fields are much smoother than their IPA counterparts, and IPA-based retrievals of the 
tihderlying optical depth field are unreliable. The scale break location TJ has been found to 
be closely related to the characteristic size (p) of the “spot” of multiply scattered light 
excited by illumination with a narrow beam, the random variable p being the horizontal 
distance between photon entry and exit points. New analytical arguments are presented for 
thick homogeneous media showing that (p) L- h[(l-g)z]-‘I*, given the cloud’s optical (2) and 
geometrical (h) thicknesses (g is the asymmetry factor); this result is shown to hold 
numerically for fractal cloud models too. An improved “nonlocal” IPA is defined as the 
convolution product of the IPA field with a gamma-type smoothing kernel dependent on (p). 

1. Introduction 

Statistically realistic horizontal distributions of cloud 
liquid water can be simulated [Cahalan et al., 1994a] by using 
fractal models adapted from the highly successful cascade 

phenomenology of turbulence [Meneveau and Sreenivasan, 
19871. Mathematically speaking, these models are 
continuous but nowhere differentiable stochastic processes, 
and their main property is scale invariance: their two- and 
more-point statistics follow power laws in the scale 
parameter, e.g., the distance between the two points 
considered in an autocorrelation function. 

Intuitively, we expect radiation fields in clouds to be 
smoother than the liquid water fields, hence extinction ones, 
because of photon transport effects. The Landsat cloud scenes 
studied by Cahalan and Snider [1989] and others [Lovejoy et 
al., 1993; S. Gollmer, private communications, 1994; H. 
Barker, private communications, 19951 are not scale invariant 
over the full range of observable scales (almost 100 km to less 
than 100 m). Rather, they found that the fluctuations of the 
radiance field follow those of the liquid water column at the 
largest scales (greater than 200-500 m) but, at smaller scales, 
it exhibits much smoother behavior. Hence a scale break in 
the radiance wavenumber spectrum was reported, meaning that 
there is a characteristic scale that separates two distinct 
scaling regimes. 

1 Also at Science Systems and Applications, Inc., Lanham, 
Maryland. 
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The large-scale regime is well described radiatively by the 

“independent pixel” approximation (IPA), which uses plane- 
parallel radiative transfer theory locally, ignoring net 
horizontal photon transport. The IPA is also applied 
implicitly in all current cloud remote sensing applications 
where the radiation fields are used to infer optical and physical 
properties such as optical depth and effective droplet radius 
[Nakajima and King, 19901. In some cases [Harshvardan et 
al., 1994; Barker and Liu, 19951, IPA retrievals have been 
applied down to very small scales, such as the 30-60 m in 
Landsat imagery; we will argue further on that this is not 
justified in general. 

The Landsat scale break and its relation to the breakdown of 
the IPA is investigated elsewhere [A. Davis, A. Marshak, R. 
Cahalan, and W. Wiscombe (Horizontal radiative fluxes in 
stratocumulus and the Lanasat scale-break, submitted to 
Journal of Atmospheric Sciences, 1995)]. In the present study 
we address two important problems left outstanding. (1) Can 
the computationally fast IPA technique be improved without 
resorting to costly Monte Carlo (MC) schemes? (2) Even 
restricting the IPA to large enough scales, how well does it 
retrieve optical thicknesses, statistically speaking? 

The plan of this paper is as follows. In the next section we 
recall some general aspects of spectral and structure function 
analysis. Section 3 describes our fractal cascade models for 
horizontal distributions of optical thickness and some of their 
scaling properties. In section 4 we describe two numerical 
methods for computing radiation fields emerging from 
inhomogeneous clouds: the IPA and Monte Carlo simulation. 
In section 5 we characterize horizontal photon transport in 
homogeneous and fractal media by estimating the size of the 
spot resulting from localized illumination. As an application 
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of these results we derive in section 6 an improved “nonlocal” 
IPA and use it to revisit the Landsat scale break problem. In 
section 7 we use structure function analysis to assess the 
performance of IPA-based retrievals of optical thickness 
fields. Finally, section 8 summarizes our results. Appendix A 
explains the less standard aspects of our numerical techniques. 
In Appendix B a boundary value problem is set up and solved 
to determine the average numbers of scatterings suffered by 
reflected and transmitted photons. 

2. Statistical Preliminaries 

2.1. Scale Invariance and Energy Spectra 

In this study we focus on stochastic cloud models and related 
data which are scale invariant: their statistical properties 
follow power laws in scale r. For the energy (or wavenumber) 

spectrum we can write 

E(k) = k-p k= l/r (1) 

over a large range of r. The spectral exponent p in (1) can be 
used to distinguish stationary (p < 1) and nonstationary 
(p > 1) scale-invariant stochastic processes [Davis et al., 
19941. But here we are interested in the spectral exponent as 
an indirect indication of smoothness properties of stochastic 
processes: among two nonstationary scale-invariant 

processes with 1 > pl > pz the one with larger spectral 
exponent is smoother. 

If there are two well-established scale-invariant regimes, 
each of which is over a considerable range of scales, we have 
one characteristic scale. The transition in power law behavior 
from k-pi to k -p2 is called a scale break. The characteristic 
scale where the scale break occurs has an important physical 
meaning: it pinpoints a change in the physical processes that 

govern the variability at the corresponding scales. 

2.2. Structure Functions 

Besides spectral analysis we will rely on “structure 
functions” to study the smoothing properties of radiative 
transfer. In this subsection we discuss power law structure 
functions in general terms, starting with the Holder exponent. 

Smoothness properties of any continuous function f can be 

characterized by its Holder exponent a: 

Hx + Ax) -f(x)1 I const lAxI’ 0 < a I 1. (2) 

The larger a is, the smoother f is. The extreme case a = 1 
corresponds to the class of differentiable functions. 

For a stochastic process $ we can define HI, the statistical 
counterpart of a, as the scaling exponent for the first moment 
of its absolute increments, lA$(x,r)l = l$(x+r)-$(x)l with r > 0: 

(lA$(x,r)l) - rH1 OS HI I 1, (3) 

where angle brackets denote ensemble averaging. Exponent 
HI is related to the fractal dimension D of the graph of $(x), 
viewed as a (random) geometrical object in two-dimensional 
space by Mandelbrot [ 19771, 

D=2-HI. (4) 

The fractal dimension D lies between unity (a rectifiable curve) 
and 2 (a measurable area), inclusive. Then HI = 2-D, the 
codimension of the graph, goes from zero (a jumpy, 
discontinuous process) to unity (a differentiable one) and thus 

provides a direct and natural measure of smoothness. 

In general, structure functions generalize equation (3) by 
requiring that, for all moments of real order q, 

(lA$(x,r)lq) - rrcq), (5) 

where <( 1) = HI. The implicit hypothesis that the prefactors 

in (5) depend,,only weakly on q implies that the function c(q) 
is concave (6 (q) 5 0) with G(O) = 0 [Parisi and Frisch, 19851; 
if, furthermore, the moments in (5) are finite, it can be shown 
[Frisch, 1991; Marshak et al., 19941 that c(q) is 
nondecreasing. “Simple” scaling (or monoscaling) means 

that s(q) is a linear function c(q) = qc(l) = qH1 ; in this case, 
HI is the only quantity needed for a two-point statistical 
description of the stochastic process Q. The classic example 
of simple scaling is fractional Brownian motion [Mandelbrot, 
19771. If c(q) is not linear, the stochastic process $ exhibits 
multiscaling or “multifractality” [Parisi and Frisch, 19851 or 
“multiaffinity” [Viscek and Barabrisi, 19911, and the whole 
family of exponents c(q) is required to describe I$ statistically. 

Finally, Monin and Yaglom [1975] discuss a Wiener- 
Khinchine relation between the second-order (q = 2) structure 
function and the energy spectrum E(k). If (1) and (5) apply 
simultaneously over the same range of scales, then 

P=<(2)+ 1 > 1. (6) 

3. Realistic Cloud Models 

3.1. Multiplicative Cascades 

Imagine a substance uniformly distributed with density $u 
over the unit interval. The interval is subdivided into two 

intervals of size l/2, and a certain amount of mass is randomly 
redistributed between these subintervals; this is equivalent to 
multiplying Q. on one side by a factor 2p, 0 Ip I l/2, and on 
the other by 2(1-p). At the next step of the construction, each 
of the subintervals is divided into two parts of equal size, and 
the same process is repeated. Proceeding iteratively, there are 
exactly N = 2” subintervals at the nth cascade step. Because of 
the conservative nature of the redistribution procedure the 
average density remains equal to @u. 

In general, a multiplicative cascade model at nth level, $,, 
is represented by a product of n nonnegative identically 
distributed random numbers (weights) W, i.e., 

n 

& = I& nWi n=l,2 ,..., . 

i=l 

(7) 

A simple example is Meneveau and Sreenivasan’s [1987] “p 

model” where the W values are either 2p or 2(1-p), with equal 
probability irrespective of the cascade step (see Figure la for 
an illustration); by construction it obeys 

N 

($, ) =$$,C~,,=4~s N=2”, n=1,2,... ~ (8) 
m=l 

Cascade models (7) are scale invariant: their statistics 
follow power laws in scale r. Thus their energy spectra are 
defined by spectral exponents B in (1). For example, the p 
model has [Meneveau and Sreenivasan, 19871 

p= 1 - logz[l+(l-2p)2]. (9) 

In equation (9), 0 < p < 1 characterizes the “singularity” of the 

. 
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( ) a 
Singular model 

(H=O, Ospsl) 

p=1 -logz[l +(l -2p)2] 

w 
Bounded model 

(H>O, arbitrary p) 

P 
p=2 

Figure 1. Spectral exponents for ‘p model” and “bounded” cascades. (a) The singular p model (H = 0) where 
B is determined by p (see (9)); the inset shows the p = 0.35 case that best fits Meneveau and Sreenivasan’s 
[1987] turbulence data. (b) The bounded model (H > 0) where p is independent of p and defined by (12); the 
inset shows H = l/3, p = 0.35 case which fits Cuhulun’s [1994] afternoon liquid water path data. 

p model. Indeed, if the weights W do not converge to 1 as 
n + 00, 4, + 0 almost everywhere as the cascade proceeds 

but, since (I$,) = $o for all n by definition, $, must approach 
infinity on some sparse subset of points (technically, of 
vanishing Lebesgue measure as n + -). Below we describe 
one way of “taming” this singularity enough to produce 

realistic cloud models with bounded liquid water cascades. For 
. scale-invariant models smoothing is equivalent to increasing 

P. 

3.2. Bounded Cascade Models . 

We now require the weights to converge to 1 as the cascade 
proceeds. Following Cuhulun et al. [1994a] (but with 
different notations), we choose weights 

W,, = lk(l-2~)/2(*‘)~ Olpl l/2 H20. (10) 

The energy spectrum scales as (l), and in the limit of infinite 
number of cascade steps the spectral exponent B is [C&&n et 
al., 1994a; Murshuk et al., 19941, 

1 < B = min(ZH, 1) + 1 I 2. (12) 

Figure 1 illustrates the continuity between (9) and (12) and 
gives two examples of singular and bounded models which 
have spectral exponents I-log21.09 = 0.88 and 5/3, 

respectively. 
The properties of structure functions (cf. section 2.2) for the 

bounded cascade model were studied by Murshuk et al. [ 19941. 
It was found that in the limit of infinite number of cascades, 
HI = min( H, 1 }. Generally speaking, we have 

c(q) = qH 0 I q 2 l/H 

(13) 

This choice is empirical and is justified mainly by its success c(q)= 1 l/HSqSm; 

in simulating observed liquid water data. If H = 0, we retrieve 
the singular p model with B c 1 defined by equation (9). If 

so (12) follows from (6) and (13). Thus the bounded cascade 

H>O,W,,+lasn+m, and the cascade model is bounded; 
model, while multifractal, cannot be distinguished from 

i.e., there exist &in and emax such that [Cuhulun et al., 1994a] 
monoscaling fractional Brownian motion (which has c(q) = 
qH) for moments smaller than 4 = l/H. 

0 < r$rmin I limn,,$, I $ mm<$O eXPi?#f+@l Cm. t1 ‘1 Stochasticall; 
In summary bounded cascade models belong to the class of 

continuous (with Holder exponent 
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H, = min{ H,l)) multiscaling models with stationary 

increments. 

3.3. Choice of Parameters for the Cloud Model 

To choose the parameters of the horizontal distribution of 
vertical optical thickness, Z, we will use the characteristics of 
vertically integrated liquid water path, LWP, as measured in 
marine stratocumulus (SC) by Cahalan and Snider [1989]. 
Assuming that the effective droplet radius, r,ff, is constant, we 
obtain the simple linear relation, z = 1 .SLWP/r,ff, where L WP 
is in gram per square meter and rerr is in micrometers [e.g., 
Stephens, 19761; in this case, r has the same statistical 
properties as LWP. 

Cahalan and Snider found that the wavenumber spectrum 
E(k) of LWP in marine SC follows a ke5j3 power law from over 

400 km to about 500 m. This immediately implies H = l/3 for 
the bounded cascade model, from equation (12), which, 
however is exact only for an infinite number of cascade steps 
[Murshak et al., 19941. To simulate the energy spectrum with 
a limited lo-cascade-step bounded model, we need a slightly 
larger H, namely, H = 0.38; this gives us spectral exponent 
p = 1.6, while H = l/3 would give about 1.5. The model’s 
remaining parameter p (called “variance parameter,” since it 

controls the width of distribution of LWP) was estimated by 
Cuhufun et al. [1994a] to have a diurnal average p = 0.25; 
according to Cahalun [1994], p varies from 0.20 in the 
morning to 0.35 in the afternoon owing to the well-known 

diurnal cycle of marine SC. 
In most of our numerical simulations we set the mean 

optical depth q. = ‘co = 13 corresponding to values of reff and 
LWP for SC of 10 pm and 90 g/m*, respectively. The cloud 
thickness h = 0.3 km is also typical for marine SC. This gives 
us a mean extinction coefficient Q,,,, = 13/0.3 = 43 km-‘. To 
emulate a large horizontal extension, we apply cyclical 
boundary conditions in the following radiative transfer 
computations. 

Let us summarize the main assumptions of our cloud model. 
First, we assume that clouds are vertically homogeneous; thus 
the local optical depth r depends only on horizontal 
coordinates x, or x and y. It is well known that even in marine 
SC-the closest of any cloud type to have plane-parallel 
geometry-most liquid water is concentrated in the upper 
layers of a cloud; however, in stratus decks, reflectance is 
only weakly sensitive to vertical inhomogeneity [Li et al., 
19941. Second, we assume that both upper and lower cloud 
boundaries are horizontal planes; this is justifiable for marine 
SC. Next we use the same phase function and single-scattering 
albedo everywhere, except that extinction varies spatially 
through 2; this is equivalent to assuming constant effective 
droplet radius and variable liquid water content. Finally, we 
take liquid water, hence T, to be scale invariant down to the 
pixel size; below this inner scale the model is assumed 
homogeneous. Thus our fractal model simulates the internal 
distribution of liquid water in SC clouds, and our results are 
limited to this type of clouds. 

4. Radiative Transfer in Fractal Clouds 

4.1. The Independent Pixel Approximation 

The independent pixel approximation for radiative transfer 
in horizontally variable clouds treats each cloud pixel as an 
independent plane-parallel medium. Thus the resulting single- 

pixel response, say, albedo Rtp(Zi) (i = l,... ,N,), depends on 
the vertical optical depth ri of this pixel but not on the optical 
depth of neighboring pixels [Cahulun, 1989; Cuhalan et al., 
1994a]. (We assume that other parameters, such as the 
asymmetry factor g, are held constant.) In other words, the 
IPA ignores any net horizontal photon transport; as a result, 
the domain-averaged albedo, 

NP 

where N,, is the total number of pixels, depends only on the 
one-point probability distribution of the optical depth field 
and neglects the effects of all the two- and more-points 
statistics discussed in section 2. 

For climate and remote sensing purposes, we are interested 
in both fluxes (mostly for climate) and radiances (mostly for 
remote sensing). To compute RIP(r) and the corresponding 
transmitted flux TIP(~), one can use a two-stream 
approximation which, in the case of conservative scattering, 
gives [e.g., Len&e, 19851 

1 
RIP@; 00,&T) = 1 - T*p(r; eo,g), TIP@; @o,g) = 

l+(&$T 
(15) 

where So is the solar zenith angle. A more accurate analytic 
expression for reflection by a conservatively scattering plane- 
parallel medium is given by Cuhulan et al. [1994a]. If even 
more accuracy is needed, Rtp(r; So,g) can be computed with a 
general purpose plane-parallel radiative transfer code such as 
DISORT [Stumnes et al., 19881. We use the latter to compute 
single-pixel nadir radiance Itp(z; So ,g), emitted vertically 
upward from the top boundary. 

Although the IPA formula is nonlinear in ‘5 (see equation 
(15)), the albedo field it generates has almost the same scaling 
properties as the original optical depth field. Figure 2a shows 
first-order structure functions defined by equation (3) for three 
fields optical depth, albedo, and nadir radiance. The slopes 
HI in Figure 2u are virtually identical for all three quantities. 
Energy spectra E(k) (Figure 2b) confirm the scaling of the IPA 
radiation field. While the spectral exponent p of the optical 
depth field gives the value of 1.58 (theoretically 5/3 if an 
infinite number of cascade steps is used), the resulting IPA 
fields show p = 1.60. Since the IPA ignores any interpixel 
(i.e., horizontal) photon transport, it does not smooth the 
original optical depth field. In order to study the smoothing 
effect of radiative transfer we must use the more accurate but 
time-consuming Monte Carlo method. 

4.2. Monte Carlo Methods Versus Independent 
Pixel Approximations 

In Appendix A we discuss the lesser-known techniques used 
in our forward Monte Carlo (MC) code. In particular, we 
implemented the “maximal cross-section” variance reduction 

technique [Murchuk et al., 19801, a trick that makes the 
computer time almost insensitive to the variability of the 
optical depth field and to the number of cells and number of 
dimensions. 

Figure 3 illustrates the outcome of both IPA and MC 
methods applied to a two-dimensional bounded model, a 
straightforward generalization of the one-dimensional case 
described in section 3.2; it had seven cascade steps, 
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Figure 2. First-order structure functions and energy spectra 
for cloud optical depth and reflectivity. (a) First order structure 
function versus scale r for vertical optical depth 2, IPA nadir 
radiance Itp, and IPA albedo Rt, fields (q(x) stands for any one 
of these quantities). A one-dimensional fractal cascade cloud 
model with 10 cascade steps, H = 0.38, p = 0.35, and 
(7) = 13 was used with optical parameters being Sun angle 
(3, = 22.5O and asymmetry factor g = 0.85; RIP is from 
equation (15) Itp is from DISORT using a Henyey and 
Greenstein [1941] phase function. (b) Same as in Figure 2a 
but for energy spectra E(k) where wavenumber k = l/r. To 
estimate the spectral exponent B, log2E(k) is fitted to a power 
law by least squares. If all wavenumbers are used, the fit is 
dominated by large wavenumbers; to make all wavenumbers 
contribute equally, E(k) and k are averaged by octaves. 

altogether (27)2 = 16,384 pixels, and an average cloud optical Based on a time-dependent counterpart of this boundary-value 

depth, (z) = 13 (see Cuhulan [1994] and Murshuk et al. [1995] problem, Appendix B shows that the average number of 

for visualizations). Pixels range in optical depth from ~1.4 to scatterings N(r,g) is proportional to the integral of G(z,z*) 

=65 (cf. (11)). In equation (15), RIP(r) is a concave function of over z from 0 to h. The result is 

2; it can then be shown [Jensen, 19061 that (RIP(~)) c 
RtP((r)) = Rpp, this last quantity being the deterministic 
prediction of plane-parallel theory, ignoring the internal 
structure. For the albedo of marine SC, Cuhulun et al. [1994a] 
found a significant “plane-parallel bias,” R&RtP), which is 
typically around lo-15% of Rpp (~8% in Figure 3). In sharp 
contrast the differences between (RIP) and (RMc), the latter 
being the domain average Monte Carlo flux, is relatively 

small, around 1%. Small dots in Figure 3 show all the pixel 
values of RMc. We can see dramatic differences between R,c 
and RIP in individual pixel albedo; some of them are as big as 
50% of RIP(r). Several values of RMc even exceed unity, 
meaning that more energy leaves the corresponding pixel than 
enters it. This can only be explained in terms of interpixel 
interactions. 

As another illustration of the difference between individual 
pixel albedos calculated by IPA and MC, Figure 4a shows both 
the optical depth and the IPA and MC fields plotted against 
horizontal distance x, for Sun at 22.5O. While both albedos 
show the same domain average of ~0.5, there are large 
differences in individual pixels. As noted in section 4.1, there 
is a direct relation between the IPA reflectivity and local 
optical depth; the horizontal fluctuations of RIP(X) follow 
those of optical depth, showing no smoothing effect. By 
contrast, RMc(x) shows considerable smoothing. To better 
illustrate the smoothness of R M&), Figure 4b shows a l-km 
fragment of Figure 4a, consisting of 80 pixels, each 12.5 m 
wide; the very small numerical noise in the MC signal is now 
apparent, showing that RM c(x) is compatible with a 
differentiable function, plus noise. 

5. Horizontal Photon Transport in 
Homogeneous and Fractal Media 

5.1. Average Number of Scatterings for Reflected 
and Transmitted Photons 

In this subsection we study the average number of 
scatterings in the radiative diffusion approximation. Consider 
a plane-parallel conservative (lilo = 1) medium of geometrical 
thickness h with imbedded diffuse sources uniformly 

distributed on the plane z = z*; we can set up the following 
boundary value problem [Case and ZweijieZ, 19671: 

! 
-Dd& oG(z-z*), 0 I z,z* I h 

[J-x~]i=o = [J + XZIFh = 0 (16) 

for the normalized photon density J(Z). In equation (16), 
D = [3( I-g)o]-’ is the diffusion coefficient where the 
extinction coefficient D = z/h and g is the asymmetry factor; x 
is the “extrapolation” length, to which we 
customary value of 20. 

The solution of (16) is the Green’s function: 

G(z ,z*) = ~ 
(z +x)(x-z*+h), O<z<z* 

(z*+x)(x-z +h), z*<zlh 

assign the 

0 I z* I h. 

(17) 
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Figure 3. IPA and MC albedos versus optical depth. The horizontal distribution of the optical depth is 
simulated by a two-dimensional bounded model [Marsh& et al., 19951 with (2) = 13 and H = l/3. Geometrical 
thickness is 300 m, and the horizontal grid size is 128 x 128 with 50-m pixels-hence an outer scale of 6.4 
km (larger horizontal scales are accommodated by applying cyclical boundary conditions). The Sun angle 8o 
is 60° and scattering is anisotropic according to a Henyey-Greenstein phase function with g = 0.85. The 
thick line gives the range of IPA albedos using Cahalun el ul.‘s [1994a] parameterization. The 
128* = 16,384 dots are the outcome of a MC simulation with lo8 photons; a few of these albedos 
(highlighted on the plot) exceed unity. Plane-parallel theory for r = (2) gives an overestimated albedo of 
0.670, while domain-averaged MC and IPA albedo give close results: 0.621 and 0.615, respectively. 

N(T’,~) - z for reflected photonr 

(18) 
N(z,g) - (1-g) T2 for transmitted photons. 

Notice that the average number of scatterings for reflected 
(albedo-contributing) photons is independent of the 
asymmetry factor g. A linear response in z is often mapped to 
optically thin situations [e.g., Rybicki and Lightman, 1979, 

p. 361. This is not the case here; in fact, equation (16) is valid 
only if (l-g) z > 1, in order to apply the diffusion 
approximation. 

The above derivation of (18) relies heavily on the 
homogeneity assumption of standard plane-parallel theory. 
However, our numerical results show that the same scaling 
holds approximately for bounded cascade models using (z) in 
place of 7, at least for the physically reasonable range of 
optical thicknesses we explored (up to (r) = 64, hence 
max,{r} = 300). Figure 5 illustrates the average number of 
scatterings N(r,O) for both homogeneous and a bounded 
cascade model having the same optical depth on average; to 
enhance photon diffusion, isotropic diffuse illumination and 
isotropic scattering were used. Plotted on log-log axes, N(z,O) 
exhibit straight lines with slopes close to 1 for reflected 
photons and close to 2 for their transmitted counterparts, as 
predicted by (18). It is remarkable that these relationships 
hold down to r = 4 in spite of being derived for large r; the 
effect of anisotropic scattering is simply to displace the onset 
of the diffusion regime to slightly higher r values, It is 

notable that for reflected photons the average number of 
scatterings almost coincides for both models while for 
transmitted photons this number is much smaller in the fractal 
case. 

5.2. Characteristic Spot Size 

In this section we study distributions of the random number 
p = [(Xo”t-Xin)*+(Y,,t-Yi”)*]“* where xi,, = (Xintyln,O) is the 
photon’s random entry point at cloud top and 
x out - - thdbut.O) or -hut = (xout,yout,h) is the photon’s exit 
point if reflected or transmitted, respectively. The first 
moment of p, denoted (p), characterizes the size of the spot 
resulting from illumination by a narrow beam. 

We first assume that our photons travel in a homogeneous 
plane-parallel medium of optical thickness r and geometrical 
depth h, the scattering being conservative with an asymmetry 
factor g. To estimate (p), we will use an analogy with 
Brownian motion. Unlike for photon trajectories, scattering 
in Brownian motion is isotropic. However, it can be shown 
that the total number of “effectively isotropic” scatterings is 
(I-g)N(z,g) on average, and that the resealed (or “transport”) 
mean free path is 

h 
I,= - 

(1%)~~ 

(See A. Davis, A. Marshak, R. Cahalan, and W. Wiscombe 
(Horizontal radiative fluxes in stratocumulus and the Landsat 
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Figure 4. Horizontal variations of optical depth, IPA, and 
MC albedos in the x direction. (a) Parameters and model are 
the same as in Figure 2 for the IPA calculations; for the MC 
simulation (lo* photons), cloud thickness h = 300 m and the 
horizontal pixel size = 12.5 m. The basic cloud element is 
2lOx12.5 m = 12.8 km long (with no variability in the y 
direction). The lower curve is optical depth, while the two 
upper curves are the albedo fields. MC and IPA yield almost 
equal domain-averaged albedo of -0.5, but they show different 
degrees of smoothness (the thickness of the MC curve reflects 
the level of its numerical noise). (b) A l-km zoom of Figure 
4a where the MC noise, ~1% of the albedo, is now visible. 

scale-break, submitted to Journal of Atmospheric Sciences, 
1995) for graphical and physical explanations of these 
resealing procedures.) 

The fundamental result in Brownian motion is that the mean 
square displacement is proportional to the corresponding time 
span. The proportionality constant is the diffusivity of the 
medium, the product of the particle’s average velocity (here set 
to unity), and the step length 1,. Since the random number p 
is the photon’s displacement at escape time test, we can write 

(P2> - k,,. 

Next we estimate the average time t,,, which photons spend 
traveling from Xln to XOUt. Since the photons have a constant 
speed equal to unity, this time is equal to the distance traveled. 
Thus, taking into account the resealed number of scatterings, 
we have 

t esc - (I-&w(W 4. 

Substituting (18), (19) and (21) into (20), we have 

(21) 

(p2) - h*/(l-g)r ulbedo case 

(22) 
(p*) - h* transmittance case 

Notice that in case of transmittance the second moment of p 
depends on neither 7 nor on g! 

To estimate the characteristic size of the spot (p) from its 
second moment (p*), we have to make an assumption about 
the distribution of p. If the distribution of p is relatively 
narrow, “short-tailed” according to Waymire and Guptu’ s 
[1981] classification, then and only then are we justified in 
estimating (p) from (p2)‘“. This gives us 

(p) = h[r( l-g)]-“* albedo case 

(23) 
(p) = h transmittance case. 

(We have deliberately used the “approximately equal to” 
relation here because the numerical data in Figures 6 and 7 
support a prefactor of order unity.) Note that, for reflected 
photons, (23) tells us that (p) is roughly equal to the 
harmonic mean of transport mean free path I, in (19) and 
geometrical cloud thickness h. For transmitted photons, 
however, (p) is independent of both 7 and g; a simple 

geometrical explanation of this is given by A. Davis, A. 
Marshak, R. Cahalan, and W. Wiscombe (Horizontal radiative 
fluxes in stratocumulus and the Landsat scale-break, submitted 
to Journal of Atmospheric Sciences, 1995). 

Our numerical simulations show, on the one hand, that the 
distribution of p is indeed narrow enough to justify (23) and, 
on the other hand, that relations (22) and (23) are also valid 
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Figure 5. Average number of scatterings versus mean 
optical depth for homogeneous and fractal models. Diffuse 
sources uniformly distributed over the upper boundary are used. 
In the fractal case the horizontal distribution of optical depth 
is simulated with a bounded cascade model with 10 steps, 
H = l/3 and p = 0.25, cloud thickness h = 300 m, and 
horizontal pixel size 6.25 m. Optical depth 7 ((7) in the 
fractal case) goes from 2 to 64, and scattering is isotropic 

(g = 0). 
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for cloud models with stochastically continuous fractal 
structure. Figure 6 illustrates the first and second moments of 
p for reflected photons and first moments for transmitted 
photons for both plane-parallel and fractal models (diffusely 
illuminated and isotropically scattering, as in Figure 5). We 
see that (p) for transmitted photons shows a trend toward 

constancy as 7 (or (7)) becomes large, as predicted by the 
diffusion-based result in (22) and (23). Plotted on double log 
axes, (p*) for reflected photons closely follows the -1 slope 
for both models, as predicted in (22). The corresponding 

empirical (p), not (p ) * I’*, does not follow exactly the l17tR 
behavior predicted in (23) but the formula remains good 
enough to be useful in the parameterization proposed in the 
following. In summary, we conclude that relations (22) and 
(23), derived for the homogeneous case, are also valid for 
bounded cascade models with different prefactors. 

Van de Hulst [1980, p. 5851 finds that the distribution of 
photon optical path in homogeneous plane-parallel media can 
be well approximated by gamma distributions: 

p(a,W 4 1 = 

Ua)((.NV 
x”-l exp[-ax/(x)] x > 0 

(24) 
p(a,(x); x) = 0 x 5 0 

where F(e) is Euler’s gamma function, and 

id2 
a=var(x)’ (25) 

with var(x) = (x2) - (x)*. These are typical “short-tailed” 
distributions. Since p, optical path, and orders of scattering 
are all closely related, this is a useful model for p as well. Our 
numerics confirm that the distribution of p is well 

approximated by (24) for both homogeneous and fractal 
models. Figures 7a, 7b, and 7c show numerically estimated 
probability density functions and gamma distributions for 
reflected and transmitted photons; a homogeneous medium 
with 7 = 16 and isotropic scattering (Figure ?a) is illustrated 
along with a fractal model with (7) = 16 and g = 0.00 (Figure 

7b) and g = 0.85 (Figure 7~). Notice that for reflected 
photons, a is smaller than 1, while for transmitted photons, a 
is significantly larger than 1. This means that many of the 
photons exit the cloud top very near the entry point, leading 
to a weak (integrable) singularity at p = 0 in the function 
describing the spot’s shape. In sharp contrast, the transmitted 
spot’s intensity is maximum not directly below the entry 
point but about 200-300 m away, a distance close to the 
geometrical thickness h = 300 m. 

6. “Nonlocal” Independent Pixel 
Approximation 

6.1. Spot Shape as a Smoothing Kernel 

On the one hand, MC is time consuming but accurate; on the 
other hand, the IPA is fast and in certain instances yields a 
good approximation; for example, IPA and MC domain- 
averaged albedos are close for SC cloud models cf. (Figures 3 
and 4 and Cuhulan et al. [ 1994b] for a systematic study of IPA- 
to-MC differences.) There is nothing between these two 
extremes. How can the IPA be improved (made to agree better 
with MC results) without sacrificing too much of its 
computational advantage in speed? 

The above results allow us to improve the IPA by 
incorporating the smoothing effects of horizontal interpixel 
fluxes. As a first approximation we can consider the 
convolution of RIP(x) with 0.5 p(a,(p); IA), i.e., 

* 8 
Transmittance: qx= 

8 
8 d 0 l 

Albedo: <p> 
H 
q 

n 

0 Transmittance, <p>, fractal 
’ ,O Albedo: <p*> 

\ l 
0 Transmittance, cp>, pp \ 

Figure 6. First and second moments of p, the horizontal distance between the photon’s entry and exit 
points, versus mean optical depth. The fractal model of optical depth, range of 7 and (7), the sources, and 
scattering properties are as in Figure 5. Only 4 million photons are need to cumu!ate the MC statistics for 
this, the previous, and the following figures. 
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Figure 7. Probability density function of p. (a) 
Homogeneous case with z = 16 and isotropic scattering. (b) 
Fractal optical depth model used in Figure 5 with (2) = 16 and 
isotropic scattering. (c) Same as Figure 7b, but scattering is 
anisotropic (g = 0.85). In all cases, numerical results and 
gamma distributions (24) are presented for both reflected and 
transmitted photons. Numerically calculated values of (p) and 
(p*) are used to parameterize tne model distribution. 

RNIP@) =;_I, Rap p(ct,(p>; Ix-x’l) dx’ (26) 

where (p) is defined in (23) and a can be set a priori. The 
subscript NIP stands for “nonlocal independent pixels.” To 
approximate the MC albedo results in Figure 4a ((z) = 13, 
h = 0.3 km, g = 0.85, 80 = 22.S’) using NIP, we take 
p (a ,(p); Ix I) with a = l/2 for simplicity and 
(p) = 0.3km/[(l-0.85)x13]t1* = 0.215 km from (23). In 
Figures 8a and 8b we plotted the three albedo fields, RIP, RM~ 
and RNIP, along with RMC-RN~. 

The convolution product in (26) is best done in Fourier 

space: 

iNpW =&(kXn”(a,(p); 4, (27) 

with [Grudshteyn and Ryzhik, 19801 

is(a,(p); k) = j da,(p); x) cos(xk) dr 

cos[a tan-’ ((p)Wa)l 

= [1 + ((p)Wa)2]a/2 ’ 
(28) 
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Figure 8. Nonlocal independent pixel approximation. (a) 
Three albedo fields calculated by the IPA, MC, and the 
improved “nonlocal” IPA in (26) are presented along with the 
residuals between the last two. The first two fields are the 
same as in Figure 4a. (b) Zoom into Figure 8a to show the 
differences between MC and the new nonlocal IPA scheme. 
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This convolution does not affect the domain average in any 
way, since F(a,(p); 0) = 1; it only dampens the small-scale 
fluctuations of RIP(x). The energy spectrum of the NIP field is 
given by 

ERNIpW = hdkY*~(a,(p); Q2 

=ER,(k) 
cos*[a tan-*((p)Wa)] 

[I + ((pWa)*la ’ 
(29) 

where ERA?(k) - ke513. Special cases of interest are a = 1, 
where (2 becomes an exponential distribution: 

E,&k) = E,,,,WF(L(p); 4* - 
k-5” 

11 + ((PM* I* 

- k-l’” as k -+ 00; (30) 

and a = l/2: 

E,qNIpW = E,, W&p); k)* 

- k-5’3 v+i$l f (:Wl* I 
-k4 ask+=. (31) 

In general, a little algebra shows that the small scale (large k) 
behavior is E RNIP(k) - k-(s’3+Ap) with 

AD = 2a a # 1, 3, 5, . . , (asymptotic approach from above) 

Ap = 2(a+l) otherwise (asymptotic approach from below). 

(32) 

Figure 9 illustrates ERN (k) for a = 0, l/2, 314, and 1. 
We see from (29) Kat for small wavenumbers k (large 

scales), both RI, and RNIp have the same spectrum which 

follows a k-5n power law, while for large k (small scales) the 

behavior is quite different. Being scale-invariant, RIP has a k- 
5’3 spectrum for al1 scales, while RNIP exhibits much smoother 
behavior for small scales (its spectrum steepens). For 
sufficiently large a the nonlocal IPA albedo field becomes 
differentiable (p 2 3). As a result, we have two distinct power 
law regimes for large and small scales; the characteristic 
(“radiative smoothing”) scale which separates these two 
regimes is given by (p). 

6.2. Application to the Scale Break in Landsat 
Radiation Fields 

Cahalan and Snider [I9891 studied the scaling properties of 
Landsat cloud scenes for marine SC. They found that for scales 
larger than q = 200 m the radiation energy spectrum follows 
the one of cloud liquid water (roughly a k -% power law), while 
at smaller scales it exhibits a much smoother behavior, with 
spectral exponent p in excess of 3. Hence they reported a 
scale break in the radiation energy spectrum and the existence 
of a characteristic scale separating two distinct power law 
regimes. The mechanism of this scale break is now clear: 
horizontal radiative transport smoothes out the small-scale 
features of the underlying extinction field. 

Figure 10 shows a one-dimensional energy spectrum E(k) 
for a Landsat scene of marine SC captured on June 30, 1987; 
this is different from Cahalan and Snider’s July 7 data, 
although it originates from the same First International 
Satellite Cloud Climatological Project Regional Experiment 
database. Furthermore, Cahalan and Snider selected a few lines 
to produce their spectrum; here we systematically average E(k) 
over 4096 (120 km long) lines of 4096 (30 m wide) pixels. 
As a result the noise level is very low. For scales larger than 
11 = 0.2 km, E(k) follows a k-l.* law, close to the km513 scaling 
observed for cloud liquid water; at smaller scales, E(k) goes as 
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Figure 9. Energy spectra for nonlocal IPA fields of scale-invariant cloud models. Equation (29) is 
for an IP reflectivity field that scales in k- 5n for r = l/k down to -4 m (only r 2 1 km is illustrated); (p) 
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Figure 10. Energy spectrum of a Landsat radiance field. A 
log-log plot of E(k) versus k for a Landsat Thematic Mapper 
4096 x 4096 subimage of a marine SC deck in channel 2 
(0.52- 0.60 pm) captured on June 30, 1987 during FIRE. 
Pixels are 30x30 m2 (note the distance scale on the top axis). 
The image was Fourier transformed line by line in one 
direction, and the resulting E(k) values were averaged the over 
the other direction. Statistical noise is thus reduced to the 
point where the small “whitening” effect of digitization noise 
appears at the very smallest scales (largest k values), at the 
level of fl bit in the g-bit data. The solid circles correspond 
to the octave-binning representation used in Figure 2. 

k-3.8 Recall that for typical marine SC values (Z = 13, 
g = t&3.5), equation (23) yields 215 m for (p), very close to 
11. At the very smallest scales the influence of digitization 
noise (fl bit out of the 8-bit Landsat data) can just barely be 
seen. 

In order to explain the mechanism of the Landsat scale 
break we investigated numerically the dependence of the scale 

break location q on h, T, g, on the variability parameters of 

-2 -1 

A slope=0.66 

Figure 11. IPA/MC comparison with first-order structure 
functions. Scaling of the q = 1 structure functions for the IPA 
and MC albedo fields from Figure 4a. For the latter case the 
scale break is around 200-400 m. The slopes define the mean 
Holder exponents HI = c( 1). 

the fractal model (e.g., p and H in (lo)), and on the choice of 
fractal model. We found that the characteristic scale behaves 

exactly like the spot size resulting from localized beam 
illumination, as determined in section 5.2 in the frame of 
diffusion theory; we also found that the fractal variability 
parameters and model choice play a small role in comparison 
with h, r, and g. In particular, both the spot size and the scale 
break are proportional to the square root of the product of 
transport mean free path I, in equation (19) and geometrical 
cloud thickness h, not to I, itself, as was first thought 
[Cuhalan and Snider, 19891. More details will be presented in 
a forthcoming publication by A. Davis, A. Marshak, R. 
Cahalan, and W. Wiscombe (Horizontal radiative fluxes in 
stratocumulus and the Landsat scale-break, submitted to 
Journal of Atmospheric Sciences, 1995). 

7. Radiative Smoothing and Remote Sensing of 
Cloud Optical Depth Fields 

7.1. Scaling Properties 

To study the smoothness properties of the cloud reflectivity 
field, we use the structure function approach defined in (5). 
Figure 1 la shows the first-order structure function for the IPA 
and MC albedo fields in Figure 4a. Being more sensitive to 
the variability at any scale, the structure function exponent 
shows a difference even for large scales (0.33 versus 0.44). 
This difference, however, becomes much larger for small 
scales (0.33 versus 0.86); the scale break is clearly seen at 
200-400 m, as observed in Landsat images. This quantifies 
the smoothness of the MC albedo field seen in Figure 4 and we 
note that the Holder exponent HI = 0.86 is not far from the 
differentiability limit HI = 1.0 (the difference is possibly due 
to a combination of numerical noise and finite size effects). 

We note that Murshak et al. [1995] compared the 
smoothness properties of IPA and MC albedos differently. 
They characterized radiative smoothing by showing that the 
“effective” spectral exponent for MC-defined numerically, 
all scales combined-was larger than the “original” value 
obtained for optical depth (or IPA). In contrast, we describe 
how much the scaling regime where the IPA is validated by MC 
results is reduced from below. Marshak et al.‘s procedure was 
justified on operational grounds because they considered a 
relatively small range of scales; their cloud model was a 
single two-dimensional bounded cascade with only seven 
steps, yielding a 128x128 horizontal grid, and they averaged 
their spectra over 64x64 boxes. 

7.2. From Albedo to Nadir Radiance 

Albedo is more difficult to measure than nadir radiance, for 
reasons related both to the field of view and to instrument 
design. Our code was therefore modified to estimate local 
radiances in vertical directions with accuracies usually 
obtained only for fluxes (see Appendix A). However, not 
much difference was found in the scaling properties of nadir 
radiance and albedo. Figure 12 shows two structure functions 
(q=2 and q=4) for albedo and nadir radiance calculated by MC. 
Again both structure functions show the scale break. 

Figure 13 shows the structure function exponents c(q) 
plotted versus q for scales either smaller or larger than 300 m 
for MC nadir radiance. At small scales the structure functions 
of MC radiance do not show much multifractality (deviation of 
c(q) from a straight line). In this case the Holder exponent, 
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Figure 12. Radiance/albedo comparison with qth-order 
structure function analysis. Scaling of the q = 2 and q = 4 
structure functions for MC nadir radiance and glbedo fields. 
(The former is computed with high accuracy by using the 
technique described in Appendix A; the latter is obtained from 
Figure 4a). The scale break is again clearly seen around 200- 
400 m. In both regimes the albedo slope is slightly larger 
than its counterpart for nadir radiance. 

H, = c(l) (highlighted in Figure 12), defines c(q) accurately. 
Notice that HI = 0.86 for albedo (from Figure 11) and 
HI = 0.71 for nadir radiance (from Figure 13); because of the 
averaging over azimuthal and polar angles, the albedo field is 
smoother than nadir radiance; thus its HBlder exponent, an 
indicator of smoothness, is expected to be larger. 

7.3. Assessment of IPA Retrievals with 
Multifractal Statistics 

Results for IPA radiances, obtained from DISORT and 
representative of all scales, are also indicated in Figure 13. 
The IPA exponents are very close to those of the bounded 
cascade model for liquid water (see equation (13)). This means 
that at the larger scales where it is useful the IPA can be 
applied to remotely sensed data to retrieve both one-point 
statistical properties of liquid water path and its two-point 
correlations but only for low-order moments (such as means 
and variances). This follows from the fact that in retrieval 
mode the IPA is applied to the real world counterparts of our 
large-scale MC fields, which have the same c(q) as optical 
depth only up to q = 2. Since higher q values emphasize 
larger jumps in the field of interest [e.g., Davis et al., 19941, 
this means the largest jumps in optical thickness are more 
radiatively smoothed than their average counterparts. 

To estimate the effect of radiative smoothing on the optical 
depth retrieval, A. Davis, A. Marshak, R. Cahalan, and W. 
Wiscombe (Horizontal radiative fluxes in stratocumulus and 
the Landsat scale-break, submitted to Journal of Atmospheric 
Sciences, 1995) use a simple plane-parallel retrieval 
algorithm and compute the average relative retrieval error as a 
function of instrumental resolution. They found about 8% 
error for smallest resolution (12.5-m pixels); as the scale 
increases, the error sharply decreases to ~4% around the 
radiative smoothing scale 11 (200-400 m) and eventually 
reaches a minimum of ~2% around 1 km scale. After this it 
increases, reaching its maximum of 11% for the domain 
average, which is related to Cuhalan et al.‘s [1994b] “plane- 
parallel bias.” Thus we see that from the standpoints of this 
simple statistic as well as the multifractal statistics used in 

this paper, one must degrade the resolution of the measured 
radiance field, at least to the radiative smoothing scales q, in 
order to get rid of the radiative smoothing and obtain reliable 
optical depth retrievals. If this is done, A. Davis, A. Marshak, 
R. Cahalan. and W. Wiscombe (Horizontal radiative fluxes in 
stratocumulus and the Landsat scale-break, submitted to 
Journal of Atmospheric Scienr es, 1995) show that, given the 
inferred optical depth field at resolution q, errors as small as 
0.3% are obtained for the domain average; this small residual 
error is commensurate with Cuhalun et aZ.‘s [1994b] “IPA 
bias.” 

Our simulations suggest that the above shortcomings of 
current IPA retrieval methods can be overcome by 
“deconvolving” small-scale radiometric data with a 
“roughening” kernel prior to applying the inverse IPA 

scheme. More realistic (rougher) optical depth fields will be 
obtained but instrumental noise (cf. Figure 10) will also be 
amplified. Further discussion of this important application is 
outside the scope of this paper. 

8. Summary and Conclusions 

Motivated by in situ and ground-based (microwave) 
probings of real clouds, the horizontal distribution of cloud 
optical depth was modeled as a scale-invariant multifractal 
cascade. Multiplicative weights in the cascade model (7) 

converge to unity as the cascade proceeds (10). As a result, we 
obtain a scale-invariant bounded cascade model with a 
wavenumber spectrum -k-p, with j3 > 1. In particular, p = 5/3 
is typical of that observed in marine SC. 

The IPA computes the radiation properties of each pixel by 
treating it as a homogeneous plane-parallel layer, ignoring 

net horizontal transport. It is routinely used in current remote 
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Figure 13. Structure function exponents c(q) for nadir 
radiance. The IPA (DISORT) results are representative of all 
scales and closely follow the theoretical values for the optical 
depth field in (13). For MC, both small-scale (I 300 m) and 
large-scale regimes are indicated; only the large-scale results 
are use@! as estimates for the statistics of the optical depth 
field and only for the low-order moments at that. The mean 
HBlder exponents HI = ((1) are highlighted, being direct 
measures of the smoothnesses of the corresponding fields. 



sensing applications to infer inherent cloud properties from. 
measured radiance fields. However, clear differences emerge 
when IPA albedos and nadir radiances for realistic multifractal 
clouds are compared with accurate Monte Carlo radiative 
transfer calculations. Spectral analysis shows that in the MC 
case there is a well-defined characteristic scale n we call the 
“radiative smoothing scale” that separates two physically 
distinct regimes: 

small scales and leave large-scale properties unchanged. 

Conversely, radiation fields measured at resolutions finer than 
the smoothing scale (e.g., Landsat) should be correspondingly 
“roughened’ before applying IPA-based retrieval schemes 
down to the smallest observable scales. 

Appendix A: Monte Carlo Techniques 

1. For scales larger than rl, IPA and MC fields have the 
same power law energy spectrum. Moreover, these radiation 
fields fluctuate in phase with the underlying optical depth 
field. Thus, at these scales, the optical depth field can be 
retrieved from the radiation fields by using plane-parallel 
theory, i.e., an IPA hypothesis However, the statistical 
properties of the inferred optical depth field are realistic only 
for low-order moments (Figure 13). 

We describe here the lesser-known Monte Carlo tricks used 
in sections 4-5 of the paper. 

A.l. Maximum Cross-Section Method 

The “Maximum Cross-Section Method” [Marchuk et al., 

19801 involves transforming the transfer equation from 

2. For scales smaller than n, MC fields have a spectral 
exponent in excess of 3, whereas their IPA counterparts 
continue to scale almost like the optical depth field. This 
small-scale regime is dominated radiatively by horizontal 
interpixel transport processes. Consequently, real 

albedo/radiance fields are much smoother than the IPA 
indicates, and IPA-based retrievals of optical depth will vastly 
underestimate liquid water variability at these scales. 

R.V,(r;n) + o(r)&;Q) = n,O(T)~P(Trn’)l(r;R’) dS2’ (Al) 

where lir0 is the single-scattering albedo and P(Z1.R’) is the 
phase function, to 

To strengthen our point, we recall that Landsat radiances 

exhibit a break in scaling properties at 200-500 m, precisely 
where we predict it to occur. 

+ (1- 2)6(&n’)] I(r;Q’) dR’ (A2a) 

To complement spectral analysis, we used structure function 
analysis (5) to study the scale break in physical rather than 
Fourier space. The scaling exponent of the first-order structure 
function Hr , also called Holder exponent (see equations (2) and 
(3)), characterizes the smoothness properties of a stochastic 
process. We found that H, is equal to 0.3-0.4 for both the 
horizontal distribution of the optical depth and the largest 
scales of the albedo and nadir radiance fields. However, it 
changes to 0.8-0.9 for the smallest scales of the radiation 
fields emerging from our fractal scale-invariant cloud model. 
(Differentiable functions are characterized by HI = 1.) 

where ~,,,~x = max, (o(r)] is the maximal extinction. Equation 
(A2a) can be interpreted as the transport equation with 
constant extinction and a modified phase function equal to 

ti&$‘(Q.Q’) with probability o(r)/o,,, 
(this is a “physical” scattering) 

Wb) 
S(&0’) otherwise (this is a “mathematical” one). 

The former occurrence is the usual case; the latter is not unlike 

that in a &Eddington parameterization (but in a position 
dependent manner). 

We argue that n is determined entirely by the characteristic 
size of the spot resulting from localized beam illumination. 
First, we set up a boundary value problem to determine the 
scaling properties of the spot size; its solution gives us the 
average optical path in a homogeneous plane-parallel medium 
in the diffusion approximation. Then Brownian motion 
theory is invoked and to the spot size as a function of the three 
main parameters of the radiative transfer problem: the optical 
thickness z, the cloud’s vertical extent h, and the asymmetry 
factor g. We find that for reflected photons the spot size is 
given to a good approximation by the harmonic mean of the 

geometrical cloud thickness h and the transport mean free 
path, h/[( 1 -g)z]. The size of the spot in transmittance is 
simply proportional to h, independently of r and g. These 
spot size results are generalized to a class of stochastically 
continuous fractal cloud models based on bounded cascades by 
using numerical Monte Carlo calculations. Finally, we show 
that the distributions of the horizontal distance between 
photon penetration and escape points are well approximated 
by gamma distributions (24). 

In this method the photon jumps immediately to its next 
(physical or mathematical) scattering point instead of 
accumulating optical depth cell by cell and interpolating 
within the last one. This makes the computer time almost 
insensitive to (1) whether we use one-dimensional, two- 
dimensional, or three-dimensional geometry; (2) the 
variability of o(r), except for very large CS,,, (hence very 
small steps); (3) the number of cells. 

All three of these factors substantially slow the execution 
of standard MC codes for inhomogeneous media. In fully 
vectorized mode [Cuhalun et al., 1994b] the above technique is 
even more economical: on a Cray YMP, rates in excess of a 

million photons per CPU-second have been achieved. 

A.2. Nadir and Zenith Radiances in a Forward 
Monte Carlo Scheme 

Simultaneously with exiting fluxes, the usual output with 
forward MC, we can compute nadir and zenith radiances; this 
computation is usually done with a backward MC approach. 
Vertical radiances lj for each cell Sj on a one- or two- 
dimensional horizontal grid are estimated by the flux of 
radiant energy across (1) the upper boundary of Sj (at z = h) in 
the zenith direction &I+), described as “nadir radiance” in the 
main text, which takes the observer’s standpoint, or (2) the 
lower boundary of 5” (at z = 0) in the nadir direction (CIJ 

improved “nonlocal” IPA will generate smoother fields at where h is the cloud’s vertical thickness. In other words, 

If the shape of the spot is known, then the effect of the 
horizontal photon transport can be estimated. More 
precisely, IPA fields can be corrected by convolution with the 
probability density function describing the spot. The 
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9 (a) =sl r@(x);Q+) 6: = E[tj (&)I, (A3) 
j 

where E[.] denotes an average over all histories. The random 
value cj(Q+) is the contribution to the grid point Sj i n 
direction Q, from all orders of (physical) scattering: 

N 

Sj (fi+)=~~k P(Q*R+) Xj(k)exp[-oj (kk)] zenith 
k=l 

Wa) 

nadir 

where N is the (random) last scattering order of the photon 
trajectory under consideration, Oj is the extinction of the grid 
point Sj, xp = (xk,yk,zk)T are the coordinates of the point at 
which the photon suffered its kth scattering, and ak is its 
direction of propagation before this scattering event. 

Finally, Xi(k) indicates whether the photon was in cell Sj or 
not at its kth scattering: 

;Ci(k) = 1 Xkyk E Sj 

Mb) 
Xi(k) = 0 otherwise. 

Formulae (A4a) can be evaluated at a relatively small extra 
computational cost in a forward MC scheme; however, 
vectorization is inhibited, at least with Cray compilers, due to 
the contingency in (A4b). 

Appendix B: Average Number of Scatterings 
Suffered by Reflected and Transmitted Photons 

In this appendix we show that in the diffusion 

approximation for conservative scattering, the average 
number of scatterings is proportional to optical thickness z 
for albedo and to (1-g)r* for transmittance where, g is the 
phase function’s asymmetry parameter. We first consider the 
simplest possible time-dependent boundary-value problem, a 
plane-parallel medium of geometrical size h with conservative 
scattering (a0 = 1): 

to the same expression but without the factor of t. The two 
terms on the left-hand side of (B3) are proportional to the 
exiting fluxes at z=zo and zo=O, respectively (Fick’s law). 
Taking into account equation (Bl) and integrating by parts the 
left-hand side of (B3), we obtain the average optical path 

ca h 

I i J(t,z)dz d t 

ot, =“, 
0 

. P (B4) 

d ,j S(t,z)dz dt 

(Equality (B4) is in fact valid for the more general case of 
three-dimensional homogeneous media without the diffusion 
approximation; equation (Bl) then will be the equation of 
energy conservation, and (B3) will read as Ostrogradski’s 
formula.) 

Next we consider a steady state boundary value problem 
[aJ/at = 0 and S(t,z) I S(z)]. It is easy to verify that the 
Green’s function G(z,z*) for this problem, J(z) with 

S(z) = 6(z-z*), is 

G(z ,z*) = ~ D(hy2x) (z +x)(x-z*+h) z < z* 

0 I z* I h. (B5) 

G(z ,z*) = yzx) (z*+x)tx-z +h) z ’ z* 

Dropping the time integrations in (B4), we obtain 

h 

j G(z,z*)dz 
0 

crt, - 
P 

=gX+g(h-z*) Gw 

j S(z)dz 

for the average optical path. This is roughly equal to the 
average number of scatterings N(h), in optically thick media 

(z = oh >> 1), and hence 

N(h)-%[XCA(l-A)h]h O<A=$ 1. 037) 

We see that if the source is located on a boundary [z* = 0 
(A = 0) or z* = h (A = l)], then N(h) is proportional to h (this 
is characteristic of reflection); otherwise, N(h) - h* (this is 
characteristic of transmittance). Recalling that 

, (Bl) D = 1/3[(1-g)cr]-t and x = 20 in Eddington’s approximation, 
we find from equation (B7) 

where S(t,z) is the source term, x is the extrapolation length, 

and D = [30(1-g)]-’ is the diffusion coefficient. We assume 
that the source is well localized in time and that the average 
time of emission is zero, i.e., 

- h - h 

/ t ,5 S(t,z)dzdt /,5 / S(t,z)dzdt = 0; WI 

on physical grounds, this implies lim,,,J(t,z) = 0. Given the 
solution J(t,z) of the boundary value problem (Bl), the 
characteristic time test for photons to be transported from their 
source to a boundary h is the ratio of 

- ha*.l 
i-t ,g (t,zo) -z 0,011 dt = j i d jq (t,z)dz dt (B3) 

0 0 

N(g,z) = T for reflected photons 

N(g,T) = (1-g)r* for “transmitted” photons. 
WI 

Consequently, reflected photons (contributing to albedo) are 
scattered typically T times, while transmitted photons are 
scattered r* times in the diffusion regime (Z >> 1). Ivanov and 

Guts/&ash [1974] derived the results in (B8), using an 
asymptotic expansion of the solution of the exact time- 
dependent radiative transfer equation, rather than its diffusion 
counterpart -equivalently, its first-order spherical harmonic 
truncation. A result similar to (B8) also can be found in Van de 
Hulst’s [ 19801 monograph “Multiple Light Scattering” (vol. 
II, p. 590). He shows that in case of conservative scattering, 
the ratio between the mean photon optical path and z tends to 
p+pc as Z+W. (Here u and /.to are, as usual, the cosines of the 
reflected and incident beams.) 
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